Pyrometallurgy Best Paper Award

The Pyrometallurgy Best Paper Award was established by the Pyrometallurgy Section to recognize the best paper on this topic published in either the CIM Magazine, the Canadian Metallurgical Quarterly or the Conference Proceedings from the previous year. The section selects the best paper and the nominations are reviewed by the Award Subcommittee.

This award is not open to nominations from the public. The award is administered by the committee of the section of MetSoc.


2021 Award Recipient

Trace Element Distributions Between Matte and Slag in Direct Nickel Matte Smelting
Sukhomlinov, D., Klemettinen, L., Virtanen, O., Lahaye, Y., Latostenmaa, P., Jokilaakso, A., & Taskinen, P.

(2020) Canadian Metallurgical Quarterly, 59(1), 67-77.

 

ABSTRACT
Abstract: The behaviour of trace elements in the nickel matte smelting was studied at 1673 K (1400°C) by equilibration-quenching techniques followed by direct phase analyses using electron probe X-ray microanalysis and laser ablation inductively coupled plasma-mass spectrometry. The matte-slag samples at silica saturation were equilibrated with SO2-CO-CO2-Ar mixtures of fixed pSO2, pS2 and pO2 in order to obtain a pre-determined oxidation degree for the sulphide matte, and thus to
generate a targeted iron concentration of the nickel-copper–iron sulphide matte (Ni: Cu = 5, w/w), depending on the slag chemistry. The slag composition was varied from 0 to 2 wt-% K2O and 0–10 wt-% MgO in silica saturation. The studied trace elements were Co, Ge, Pb, Se and Sn, but also the matte-to-slag distributions of the slag forming fluxing components Mg (MgO) and Si (SiO2) were determined experimentally. Selenium was the only trace element studied which strongly enriched in the low-iron nickel mattes, and the deportment became larger when the sulphide matte depleted with iron. All the other trace elements behaved in the opposite way.

METSOC is a constituent society of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM).
Switch to desktop